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Solutions of the Navier-Stokes equations In Porous Media

Introduction s

In this chapter, in Section 1 we discussed some
basic concepts required for our problems. In Section 2 we
gave brief history and major developments in the flow
problems through porous media. In Section 3 we studied the
problems of flow in convergent and divergent porous channels.
In Section 4 we discussed Generalized olane coufcte flow* * -a

between two porous plates. In Section 5 we studied Generalized 
plane coutte flow between two coaxial infinite porous 
cylinders, when inner cylinder is moving with constant 
velocity U and outer is at rest. In Section 6 we obtained 
the velocity distribution in the case of spiral flow between 
two coaxial cylinders when the outer and inner cylinders are 
rotating with constant angular velocities.

1. Basic concepts required for our problems to be discussed:

(a) Fluid s

All materials exhibit deformation under the action 
forces. If the deformation in the material increases 
continuously without limit under the action of shearing 
forces, however, small, the material is called a "fluid1'.
This continuous deformation under the action of forces is 
manifested in the tendency of fluids to flow.
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Fluids are usually classified as liquid or gases.
A liquid has intemolecular forces which holds it together 
so that it possesses volume but no definite shape, when it 
is poured into a container will fill the container upto the 
volume of the liquid regardless of the shape of the 
container. Liquid have but slight compressibility for most 
purposes it is, however, sufficient to regard liquids as 
"incompressible fluids". A gas, on the other hand, consists 
of molecules in motion which colloid with each other tending 
to disperse it so that a gas has no set volume or shape.
The intermolecular forces are extremely small in gases. A 
gas will fill any container into which it is placed and is 
therefore, known as (highly) "compressible fluid".

(b) Viscosity s

Viscosity of a fluid is that characteristic of real 
fluids which exhibits a certain resistance to alterations 
of form. Viscosity is also known as internal friction. All 
known fluids (gases or liquids) possess the property of 
viscosity in varying degrees.

(c) Newtonian Fluid :

Newton observed that in a simple rectilinear motion 
of fluid layers, one is moving over the other with the 
same relative property, will experience a tangential force 
proportional to the relative velocity between the two layers 
and inversely proportional to the distance between the



22

layers. If the two neighbouring fluid layers are moving 
with velocities u and u + 6u and at a distance 6y the 
shearing stresses is given by

6u du
■— or T = ys.---
6y dy

This is called "The Newtonian hypothesis" and a fluid 
satisfying this hypothesis is called Newtonian fluid.

The constant of proportionality p, is called as 
coefficient of viscosity and du/dy is the strain-rate of 
the fluid. Newtonian fluid are also known as viscous fluids.

(d) Non-Newtonian Fluids ;

The fluids which do not satisfy the Newtonian 
hypothesis that fluids are called as non-Newtonian fluids.

(e) Reynolds number ;

The dimensionless quantity^R^defined as
UL U L

- ---

where U, L, <3 and y are some characteristic values of the 
velocity, length, density and viscosity of the fluid 
respectively, is known as the Reynolds number.

(f) Prandtl Number :

The ratio of the kinematic viscosity to the thermal
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diffusivity of the fluid.

Kinematic viscosity V

Thermal diffusivity a

is designated as the Prandtl number.

(g) Suction :

The retarded fluid in the boundary layer is sucked 

into the body. The point of suction is near the point of 

separation# either slightly ahead or behind so that no back 

flow will occur.

(h) Injection :

Fluid is injected from the body into the boundary 

layer so as to increase the kinetic energy of the fluid in 

the boundary layer and to delay the separation.

(i) Darcy's Law :

Darcy's (1856) performed a number of experiments on 

flows of water through porous media by making water to 

percolate vertically through sand filters. It was observed 

that the rate of percolation of water was directly propor

tional to the cross sectional area of the filter bed and 

the total force# say the sum of pressure gradient and the 

gravity force. These experiments gave an empirical law# 

known as Darcy's Law as

ji / 5) ]iCp ^

K/ j> Cp K
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q = CA ( llf_2 +
hl_h2 ? g )

where A s the cross sectional area of filter bed 
C : K/]i

where K : the coefficient of viscosity 
q : the flux of the fluid.

(1)

2. Flow through porous media and major developments of
the flow problems in porous media.

(a) Flow through Porous Media :

Another important class of small Reynolds number 
flows are the flows through porous media# such flows are 
very much prevalent in nature and therefore these need 
through investigation. The study of flows through porous media 
is comparatively easy because in these flows the Inertia 
forces are usually very small as compared to viscous forces.

Flows through porous media occur in filteration of 
fluid and seepage of water in river beds. Movement of under
ground water and acts are some other important examples of 
flows through porous media.

An oil reservoir mostly consists of porous sedi
mentary formation such as limestone and sandstone in which 
oil is entrapped.

Another important example of flow through porous
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media is the seepage under a dam, with the high pressure 
on the waterside of the dam the seepage of water through the 
soil in dam area lowers the water head and thus result in 
loss of energy. Therefore, the study of seedage of water 
under the dam is very important. There are numerous other 
practical uses of fluid flows through porous media.

A few words about porous media itself, and the 
porosity is definitely called, for a porous media is literally 
a solid which contains a number of small holes distributed 
throughout the solid these holes may be effective or 
ineffective by effective holes we mean these holes through 
which the fluid can actually pass, it is these holes which 
contribute towards the porosity of these material by 
ineffective holes may either be so fine that fluid can not 
move through them due to surface tension, or the holes may 
not be interconnected. If the holes are not interconnected 
then the fluid cannot pass through them and thus these 
become ineffective in figure by holes we shall mean only 
the effective holes. The holes may be distributed homogene- 
outly or having any set pattern or may be very small or 
moderately large, some of the examples of porous media 
are spunches, a book of sand, cotton and woolen packings.

The porosity of a material is defined as a fraction 
of the total volume of the material which is actively 
occupied by the holes to obtain the apparent density of a 
porous material we first calculate the density of the pore
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free material p and then the density p of the dry porous Js J a
material form this porosity is defined as

o = l- -?2L

(b) Major Developments of the Flow problems through porous
media :

Gunadhar, Paria.studied the plain strain deformation 
of a porous visco-elastic body containing a field 
in the shape of a circular cylinder has been found.

Datta, S.K. studied the problem of steady-state
laminar flow in an annulus with porous walls for an 
ordinary viscous fluid, has been considered by 
Berman . He took the fluid injection rate at
one wall to be equal to the fluid suction rate at 
the other walls.

Datta, S.K.jjS^j studied the laminar flow of a certain type 

of non-Newtonian fluid between two porous plane 
parallel boundaries has been discussed assuming 
constant suction at both the walls the type of 
fluid taken satisfies the strain-strain relation 
postulated by Rivilinn.

Arun Kumar Ghosh £loJ the flow of a Reiner-Rivlin fluid 

between two co-axial porous circular cylinder has 
been studied for the particular condition when the 
inner cylinder starts moving from rest with constant
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velocity. He obtained solution of the problem in 
two extreme cases of very large and very small 
coefficient of viscosity. The longitudinal motion 
of a piston in a Reiner-Rivlin fluid contained in 
a fixed circular cylinder has solution reported for 
the specific cross flow Reynolds number equal to 
unity.

Mishra, S.P. and Acharya, B.P. [j25^j the flow of a Rivilin- 
Ericksen fluid between two co-axial circular 
cylinders has been studied for the particular 
condition when the inner cylinder starts moving 
from rest for a certain period and then comes to 
rest. The inverse laplace transform in the general 
case being complicated, the solution of the problem 
has been obtained when the gap between the cylinders 
is small. It is observed that the velocity and the 
shearing stress at the wall are considerably 
affected by the elasticity of the liguid.

Narang, H.N. and Lamba, R.C. Jj27J studied the transfer of 
heat and moisture in an infinite porous plate in 
contact with moving fluid. The equation of internal 
heat and mass transfer in the porous media have 
been solved in conjuction with the flow and energy 
equation of the fluid, taking into account the 
frictional heating. The fluid has been taken to be 
incompressible and the motion is assumed to have 
started impulsively, the problem solved with the
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help of Laplace transform and solution for small and 
large values of time have been obtained.

Gupta# M.C. and Goyal# M.C. (j-^-3 studied the flow of viscous 

incompressible fluid between two porous co-axial 
rotating circular cylinders with different radial 
velocities 'V * and 'V^' at the walls has been 
studied with the help of perturbation technique. An 
exact solution of the Navier-Stokes equation reduced 
to second and third order non-linear differential 
equations with appropriate boundary conditions.

Gupta# M.C. and Goyal# M.C.Jj.2~J studied the unsteady flow 

of homogenous viscous incompressible fluid between 
two porous co-axial rotating cylinders has been 
studied and complete solution for all the three 
velocity distributions have been obtained in closed 
forms with the assumption that the rate of suction 
at the one wall is equal to the rate of injection at 
the other wall. It has been found that the axial 
velocity is maximum at the middle of the annulus 
and the velocity profiles are symmetrical about the 
maximum velocity for any finite value . The 
symmetry of temperature distribution profiles 
exhibit that the maximum of the temperature.

Khan# Mohd Abdul ^2()J studied the unsteady hydromagnetic 

flow of a viscous incompressible and electrically 
conducting fluid due to rotating vibration of a 
porous disks about a constant nonzero mean over a 
fixed has been analysed.
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Venkateswara [4o] studied the special problem of the motion 

of two immiscible liquids in a slightly dipping 
heterogenous porous media with the presence of an 
immiscible connate water phase.

Verma, P.D. and Gaur, Y.N. studied the oscillating
flow of a viscous incompressible fluid fixed porous 
sphere has been investigated using stokes approxi
mation, the stream function and hence the velocity 
components for the flow outside and inside the 
sphere have been obtained in terras of porosity 
parameter. The extreme values of the porosity 
parameter have also been obtained and represented 
graphically for small values of the frequency of 
oscillations.

Tewari, V.D. ^35~J studied the effect of viscous dissipation 
has been studied for the case of the fully developed 
natural convection flow of a visco-elastic fluid on 
a porous vertical flat plate. Numerical calculations 
have been made to study the effect of elasticity; 
suction parameter and prandtl number on the velocity 
and temperature profiles.

Gaur, y.N. £l3^] studied the problem of flow of a viscous
incompressible fluid confined between two rotating 
co-axial infinite porous discs have been investigated 
with the assumption that the rate of injection of 
the fluid at one disc is equal to the rate of suction 
of the fluid at the other. The velocity components
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have been expressed in terms of three dimensionless 
function, which in two are obtained in ascending 
power of the Reynolds number (taken to be small) the 
effects of porosity on radial, transverse and axial 
velocities have been depicted graphically for 
variousvalues of the ratio of the angular velocities 
of the two discs.

Thakur, P.J. and Sinha, K.D. jj36^] studied the steady state 

solution of the Navier-Stokes equations for the 
viscous incompressible flow between two infinite 
parallel porous plates, one executing linear oscilla
tions and the other in uniform motion in its own 
plane has been obtained.

Captain, R.N. and Dube,shishirkumar studied the flow of 
a viscous electrically conducting incompressible 
fluid over an oscillating non-conducting and non
magnetic infinite porous flat plate in the present 
of a transverse magnetic field has been analysed 
when the magnetic Reynolds number is equal to the 
viscous Reynold's number small uniform suction or 
injection has been imposed along the surface of the 
plate. Expressions for velocity, induced magnetic 
field, current density, electric field and skin 
friction are obtained particular case when the 
applied magnetic field is zero has also been 
considered.
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Matkowsky, B.J. and Siegmann investigated the Von
Karman similarity equation for fluid flow between 
two infinite co-axial discs that rotate with equal 
rotation rates and in opposite direction. The non
linear singular perturbation problem for high 
Reynolds number is analysed by formal asymptotic 
method.

Siddappa, B. and Bujurk, N.M. [32] studied slow viscous flow 

between parallel surfaces with injection at one 
surface is considered the solution are given the 
stagnation flow in the neighbourhood of an opposed 
surface.

Siddappa and Patel, S. Gundappa [33*] investigated an exact

solution is obtained for the free convection laminar 
flow of an incompressible viscoelastic (Rivlin- 

Ericksen) fluid past a porous wall with constant 
suction. It is found that the rate of heat transfer 
decreases with an increasing frequency stress is 
also attered from the classical case.

Francis, M. Skalak and Chang-yi-Wang 034*] studied the

equation describing similarity solutions through a 
uniformly porous tube and channel with equal rates 
of injection or suction at the walls are analyzed. 
The number and character of the solutions possible 
for various values of suction and injection are
found,
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Pandey, [29) studied the solution of the Navier-Stokes
equations for the slow steady motion of a viscous 
incompressible fluid between two porous walls at 
slightly variable distance from each other equal 
suction velocities + V0(x) have been imposed at 
the two walls and the solution has been obtained by 
using the fourior transform method.

Gupta# P.M. and Kulshreshtha,
solution of Navier-Stokes equation for the case of 
steady state laminar flow in an annulus with porous 
walls under the assumption of constant influx through 
one wall equal to influx through the outer wall.
Verma has also obtained the solution for the 
problem of flow of a viscous liquid under exponential 
pressure gradient superposed on the steady laminar 
motion of an incompressible liquid between two 
co-axial cylinder. Das has also obtained solution 
of the problem of steady flow of a viscous liquid 
in an annulus with uniform arbitrary injection and 
suction velocities.

. ^30~] studied the effect ofPatni, G.C. and AtoLia, R.N
elasticity of the waiter's type B" liquid on 
pressure longitudinal and transverse velocities 
are discussed. In this case of plane couette flow 
between two parallel plates with uniform suction 
at the lower stationary plate. It is also found 
that the transverse velocity is independent of the
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axial distance x.

Mishra, Shankar Prasad and Mohapatra,Priti [^24^J investigated

the unsteady free convection flow of an incompressible 

electrically conducting viscous liquid past a hot 

vertical plate in the presence of a transverse 

magnetic field. The flow problem phenomena has been 

characterized by non-dimensional number p (Prandtl 

number) G .(Grashoff number), m (Magnetic number and 

W (frequency parameter) the effect of these parameters 

on the velocity and temperature distributions, 

amplitude and phase of skin friction and the fluctua

ting parts of the velocity have been tabulated and 

represented graphically.

Gupta, Premchandra and Sharma, Ram Gopal studied the

unsteady flow of viscous incompressible fluid 

through porous media in a long rectilinear tube with 

impermeable boundary. Technique of Laplace transforms 

has been applied to solve the equation of motion 

and it is demonstrated with the help of graphs that 

the flow in porous media is slower than in an 

ordinary flows.

Verma, P.D. and Vyas H.K. ^4lJ studied the slow steady flow 

of a viscous fluid past a porous sphere of variable 

permeability. For the porous material within the 

sphere Darcy's Law will hold good. The law of variation 

of permeability is taken to be proportional to the 

nth power of the radial distance from the centre of
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the sphere the boundary condition at the porous 
surface has been taken by Jones the drag experienced 
by the porous sphere is determined the variation 
of the drag with surface permeability has been 
shown graphically for different values of 'T| * *

Gupta# Premchandra [l5j made an attempt to study the
unsteady laminar flow of a viscous incompressible 
fluid through porous media having uniform radial 
magnetic field in a channel whose cross section is 
a circular under the influence of arbitrary time 
varying pressure gradient studied with the help 
of the technique of Laplace# finite fourier cosine 
and the finite Hankel transforms when the pressure 
gradient is an absolute constant. It has been 
observed for a fixed value of Hartmann number. The 
flow increases as porosity increases and that for 
a fixed porosity# the flow decreases as Hartmann 
number increases.

Acharya# B.P. and Padhy# S. £lj studied an analysis of a 
free convective flow a viscous liquid past a hot 
vertical porous wall is presented under the 
assumption that the suction velocity is constant 
and normal to the wall and the wall temperature is 
spanwise cosmusoidal. Approximate solution of the 
equation of motion and energy have been obtained 
by the method of regular perturbation. The effect 
of the different flow parameter on the function
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affecting the mean velocity, temperature, skin 
friction and rate of heat transfer have been 
presented.

Nandlal Singh jjn'J studied the problem of flow of a visco

elastic fluid under unsteady pressure gradient in 
a region bounded by two parallel porous plates. It 
is assumed that at one plate fluid is injected with 
a certain constant velocity and that at other it is 
sucked off with the same velocity. An exact solution 
for the fixed injection Reynolds number.

Venkatachalapp, M.? Sekar, R and Rudriah ^44^] studied the 
propagation of finite amplitude tidal waves at the 
interface between two semi-infinite fluid saturate-d 
porous media of different densities with the external 
constraint of rotation is investigated using both 
analytical and numerical method. The set of non
linear partial differential equations governing the 
wave motion have been reduced to the set of non
linear ordinary differential equations using a 
suitable integral. From this set, the phase portails 
are obtained.

Jyotirmoy Sinha Roy and Nalin Kanta jjL7*j studied a series 

solution for the steady, laminar visco-elastic 
flow produced by rotating disc with suction. The 
constants in the series are evaluated numerically.
It is shown that this approach yields valid solution 
of high accuracy for all cases of suction at the disk
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surface. The effect of the elasticity on the flow 
field have been studied.

Varshney, C.L. and Kamal Kumar studied a theoretical
analysis of the three dimensional unsteady flow of 
an incompressible viscous fluid through a porous 
medium past an oscillating porous plate subjected to 
uniform suctioii/injection (blowing) in a rotating 
system. Whole system is in plate of solid body 
rotation with constant angular velocity about z axis 
normal to the plate. The effect of porous medium, 
the suction/injection (blowing) parameter on the 
velocity distribution has been graphically shown.

Megahed, A. A dej$ ^22~] studied the two dimensional flow of 
viscous incompressible and electrically conducting 
fluid through a porous medium bounded by an infinite 
porous plate and subjected to a uniform external 
magnetic field is treated in two cases. Assuming 
the Magnetic Reynold's number small in both the 
cases. Sorfie special cases are deducted and discussed.

Bhargava Rama and Meena Rani ] studied the problem of
MHD flow and heat transfer in a channel with porous 
walls of different permeability has been investigated 
by the method of quasilinearisation. Starting from 
the initial guessed values the velocity function 
along with the temperature function has been 
obtained for different sets of values of Reynolds 
number R suction parameter a and Hartmann number o .
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Bhattacharjee, A. and Borkakali, A.K. ^3
in the flow of a conducting fluid between two non
conducting porous disks - one rotating and other 
at rest, in the presence of a transverse uniform 
magnetic field, the lower disk being adiabatic, is 
studied asymptotic, solution are obtained for 
different values of Hartmann number M and .

Verma, Vijaykumar, 5. and 3yam Babu, M. £42*] studied A

steady flow of a viscous incompressible fluid through 
a channel bounded by permeable media of different 
permeabilities is considered. A transverse magnetic 
field is applied to the wall. The flow inside the 
lower porous media is with high permeability. The 
upper porous media is of low permeability. They 
obtained the expression for velocity, magnetic field, 
mass flux and coefficient of spin friction in two 
cases corresponding to (i) when the upper wall is 
rigid and the lower wall is porous and (ii) when 
both the walls are porous. They discuss the effect 
of magnetic parameter (f on the velocity by 
introducing the magnetic field. They observe that 
the velocity decreases in both the cases as M 
increases there is further reduction in the 
velocity. The magnitude of the velocity in both 
the cases is larger than the corresponding values 
in the rigid case.

J studied heat transfer
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Singh, Tejwant and Gupta, R.K. studied an elastico-
viscous steadily flow in the annulus of two co
axial circular cylinders, rotating with different 
angular velocities together with translating motion 
of inner cylinder along the axis of rotating, 
cylinders being porous. It is found that the 
torodial and axial component of velocity decreases 
with an increases in elasticity of the fluid. The 
axial component increases with an increase in cross
viscosity of the fluid, while torodial component 
is independent of it. The behaviours of torodial 
and axial component of velocity, with an increase 
in Reynolds number.

Reghavacharyulu, N.CH. j^3lj studied the combined free and 
forced convection in a saturated vertical porous 
tube of uniform circular cross section with a 
uniform heat source. The governing equations are 
solved for velocity and temperature fields in the 
form of fourier Bessel series.

Gaur, Y.N. and Bhatnagar, V. ^16*] investigated the slow
unsteady flow through a porous circular tube with 
axial waviness by perturbing the solution for flow 
through a porous smooth tube. Fourier transform 
technique has been used to get the expression for 
axial and radial velocities and pressure.

Agarwal, R.S. and Meena Rani |^2~j The numerical solution of 
energy equation for the temperature distribution in
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viscous flow past a porous flat plate is obtained.

A uniform suction, that follows step function change, 

is applied normal to the plate. The result for 

different values of Prandtl number are found by 

finite difference technique, when the suction 

velocity doubles in the step change.

studied the effects

of suction and injection on the flow of a micropolar 

fluid past a semi-infinite porous plate. Similar 

solution to the boundary layer flow 6f this fluid 

are presented and the effects of suction and 

injection are discussed.

j^28j studied heat transferPurohit, G.N. and Sharma, B .D

in the flow of a conducting viscous incompressible 

fluid between two nonconducting rotating porous disks 

under the influence of an applied magnetic field 

perpendicular to the disc the temperature versus 

dimensionless distance graphs reveal that the 

maximum temperature occurring between the disks 

increases with the Hartmann number M and decreases 

with (the ratio of angular velocities of the 

disks).

flow of a

viscous incompressible and electrically conducting 

fluid between two infinite porous plates, one of 

them is fixed and the other is moving with uniform 

velocity is considered. When a uniform magnetic
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field acts perpendicular to the plates the transverse 
components of the velocity is expressed in terms of 
any arbitrary function of time. A method is introduced 
to obtain the exact solution for both the equation 
of motion and induced magnetic induction.

Komal Kumar. Sharma, H.C. and Gupta, P.C. studied a
theoretical analysis of two dimensional flow of 
conducting stratified viscous fluid through a porous 
medium bounded by a rigid plane in the slip flow 
regime in the present of a uniform transverse magnetic 
field has been presented. The effect of porous media, 
the magnetic field. The stratification parameter 
and the rarefication, parameter on the friction 
phase and amplitude are shown graphically.

Kuiry, D.R. and Thakur, P.J. jj39j he obtained the solution 
for the flow of viscous incompressible fluid of 
small electrical conductivity part on infinite 
porous flat plate started impulsively from rest in 
the presence of a constant transverse magnetic field 
fixed relation to the fluid with an imposition of 
small uniform suction or injection over the plate 
some results and skin frictions are also calculated.
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3. Flow in Convergent and Divergent Porous Channels s

Let us consider the steady flow of a viscous incom
pressible fluid between two non-parallel porous plane walls. 
Let the external forces be absent, we use the cylindrical 
polar coordinates (r, e, z ). We take z axis is the line 
of intersection of the planes and r is the distance from 
this line, the walls are in the planes 0 =* + a.

Fig.l s Flow in egt and Dvt porous channel.

If the motion is purely radial, then the only non
zero component of velocity is Vr and hence the equation of 
continuity and momentum reduce to
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and O
i 2 ^ vr
- -- + U,-- -----
r 3e r2 9 0 (3.3)

The boundary conditions are

0 = + a, vr = VQ ... (3.4)
where VQ is constant suction Velocity.

The equation of continuity (3.1) gives
f(0)

Vj- — ---- ... (3.5)
r

where f(0) is an arbitrary function of © to be determined. 
Due to Equation (3.4), the equation (3.5) gives

f
r (3.6)

Substituting Equation (3.6) in Equation (2.2) and (2.3) 
we get

f2 ^ P f"
-P-? dr rJ

... (3.7)

-"3 p f •
o = -----

0
+ 2ji —a

r^
... (3.8)

and the corresponding boundary conditions are

© = + <x, f = r Vq ... (3.9)

Differentiating (3.7) with respect to © we have

p f"*
- --- 2f f * - -------- + ji ~-- ... (3.10)

r3 Q~d r r3
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Differentiating (3.8) with respect to 'O' we get 

~ ^ 2p 4p.f *
0 = -------  - ---- ... (3.11)^■50 r3

Substituting equation (3.10) and (3.11) we get

2ff' + V (fM,+ 4f' ) * 0 ... (3.12)

where a prime denotes differentiation with respect to © and 

kinematic viscosity ( )j ) = V> / p

Integrating equation (3.12) with respect to 0 , we get

f2+U (fH + 4f) * K ... (3.13)

where K : Constant of integration.

Multiplying (3.13) by 2f and integrating once 
again, we get

2f'2 «   (h + 3kf - 6 V f2 - f3 ) ... (3.14)
3 V

where h s second constant of integration.

The problem is to solve the equation (3.14) with 
the help of the boundary conditions given in equation (3.9) 
which are two number. But the equation of the equation(3.14) 
requires three boundary conditions and, therefore, an 
additional boundary condition is to be prescribed. When the 
flow is purely divergent or purely convergent the function 
'f' will be symmetrical about © = 0, and in such a case the
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value of f at 0 * 0 may be prescribed. 
Equation (3.14) can be written as

^ f j 2
( ----) - ---- (f, - f) (f0 - f)(f, - f) ... (3.15)Be 3 y x 2 J

where the constant f^, f2 and £3 are connected by the 
relations -

+ ±2 + f3 =* - 6 V ... (3.16)

f.^2 + f2^3 + £3^1 * - 3K (3.17)

and f1f2f3 ■ h ... (3.18)

Integrating equation (3.15) between the limits -a to 0, we get

df
(fx-f)(f2“f)(f3-f) ^ *# (3.19)

where £0 : The value of f at © = 0. The solution of equation 

(3.16) may be expressed in terms of the elliptic function

(a) Flow in a divergent porous channel
<9~°<

Source ©=0

9z-<

Fig.2 - Flow in a divergent porous channel.

I
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For the flow in a divergent porous channel# the radial 

velocity will be positive and# therefore, from equation (3.5) 

we conclude that in this case f(0) is positive (f 7 0).

Since the middle of the channel f* = 0 we find from equation 

(3.15) that f must be equal to f^, f2 or f3.

Let f = f^ = fQ

the equation (3.19), in the view of equations (3.16) and 

(3.18) may be written as

a
h

(f.-f) 1 f2 + (6 l> + f.) f +-- 1/2
'1 J

(3.20)

Since# on the walls f vanishes, therefore, 

equation (3.14) that

3 V

it follows from

... (3.21)

Hence H is positive# therefore a has its greatest value 

for a given value of f^ when h = 0, that is either f2 or f3 

is zero.

Let f = f1 Cos2y )
1 ) 
f3 r(Vr)jflax ) *** (3.22)

V V )

* Reynolds number.

Substituting (3.22) in the equation (3.20) and neglecting 

the term containing 6 p , when Re is large, we get
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3 V j%/2 - 2fx Cos \fJ Sinf dy

fx Sin2y f2 Cos2y (1 + Cos2y )

3 V . 2f^ /» Tt/2 Cos y Siny dy
2 fiJf” J o sin y cosy y^lT + c0s2y

3T ,__ rV2 dya ■. / \/^r J -----------------—-
fl y 0 ^/T + (l-sin^)

a
dy

(1 - | Sin^ y )l/2

a \/~ Re
dy

/ n 3- . 2 V., \ i/ 2(1 - - Sin y )
(3.23)

Thus a \/ Re has an upper limit when 'Re* is large and a 

is small. Hence if the angle a and Reynolds number Re are 
specified, then the velocity profiles may be calculated 
from equation (3.15) either f2 or f3 equal to zero.
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(b) Flow in a convergent porous channel.

Fig.3 - Flow in a convergent porous channel.

For the flow in a convergent porous channel/ f mist 
be negative therefore, from equation (3.18) and (3.21), it 
follows that one of the root should be positive and other 
two must be negative.

Let f^ be positive and f2, f3 be negative. Further 
f2 ^ ^ 0 (it is only in the middle of the channel,
where f =* f2 ) and f^ f2 •

Let Re =■ - f2 /

f/f2 - W
-fj/f 2 = W1

Vf2 - W3

) ... (3.24)
)
)

and f „/f „ = W-j )

so that the W*s are positive and W3 lies between o and 1.

Substituting equation (3.23) in equation (3.16), we
have

I
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1 - W]L + w3
6

Re
... (3.25)

with the help of equation (3.24), the equation (3.15) reduce 
to

df 5 2(----) 2 - --- (R
de 3 V

" d
--- ( - \> W Re)
d 0 *a*s

dWf 2 2Re( ---- ) - — (w.

3 1/
(Re)3 (Wj+W)(1-W) (W3 - W)

d e

d 0 =
a*? ... (3.26)

2Re \y/ (Wx + W)(1 - W) (W3 ^W) 

On integration we get

cfrf
[(Wi *w) (l-w) (w3-wfj172

e =
2Re f1J w

dW
’(W'j+W) (1-W) (W3-W)J V2 ... (3.27)

On integration (3.25) between limit -a to O for 0 and O 
and 1 for W we get

Re1//2 a fir --v 2 r (i aw
jji-w) (w3-w) (wx+w)J l/T ... (3.28)
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Now there is no restriction on the upper limit of 
Re*72oc. However, in order that Re^2a may be large w3 must 

be nearly equal to 1 and therefore, if 6/Re is neglected 

from (3.25) we conclude that is nearly equal to 2. With 
these values of Wi and W2/ we find from equation (3.27) and 
(3.28) that

a - 6
,[± j-
\l 2Re 0

d W
(1 - W)(2 + W) 172 ... (3.29)

Putting 2 + W = 3 tan*h2y

and integrating equation (3.29) we get

I 3 f 3tan¥\’y
« - Q =---

\ 2Re J
-2

tan"#* h~l\/2/3

6 tan h 'f Sec2 h'f

3 Sec h^>
dy

3tan h2 ^ ^

tan h-^/2/3
dy

(a - 0)

(2 rss /_— 13 tan h2 y -2 - tan h“^ ( \/2/3)
\J Rs L—
l~Re
VT

= 3 tan h2f - 2 - tan h"1 ( n/2/3)

3 tan h I' tan h‘-1 . 2 .
3 J

■ 3 (tan h tan h
-v-;-]2 2 - 1.146.
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3 (W + 2) 

3

2

2

- 2 - 1.146

1.146.

= W - 1.146.

f„
V.

max

r'
= 3 tan h*

Re 1/2(---(a-0) + 1.146
2

.. (3.30)

Satisfying the boundary condition (3.9) since tan hx is close

to unity when x is close to 2.5, it follows that from equation

(3.30) that for large Re. the velocity Vr will be equal to

(Vr)max everYwhere except in a thin layer near each wall of
1/2thickness proportional to Re '

Further, from equation (8), on integration, we find 

P 2 y f
+ F (r)

pSince from equation (3.7) we conclude that rJ ——
r

... (3.31)

should

be function of © only, F(r) should have the following form -

- K
F(r) = ---- ... (3.32)

2r2



51

Hence
P

?

2 V f K

2r*
. .. (3.33)

now when = 2 and W3 = 1, we find from (3.24) and (3.27)that

K - 4 -r2

Therefore,
p_ . ;f|_ +
p 2r2 r’

_P + <V;«x = 121-

- y "i
that is, for large Re the pressure at the walls, is equal to 

the pressure of the main flow.

The results obtained above concerning the velocity 

and pressure near the walls, for large Reynolds number, are 

in exact agreement with the basic assumption of the theory 

of boundary layers.

,4. Generalized plane couette flow between two parallel

porous plates.
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Let us make the following assumptions s

(1) The two parallel infinite porous plates be situated 
at y = 0 and y = h

(2) The flow between two plates is steady incompressible 
one in the x direction. Under the above mentioned 
assumptions the Equation of continuity gives -

dv
---  = 0 ... (4.1)
<*y

That is, v does not depend upon y. This gives that the fluid 
is entering the flow region through one plate at some rate 
as it is leaving through the other plate. Further, let us 
take that the fluid is entering the flow region at a constant 
velocity VQ through the plate at y = 0 and leaving with same 
velocity through the plate at y = h, then the equation (4.1) 
gives that throughout the flow region, the velocity along 
y axis is VQ.

Then the momentum equations become

du = . +
d2 u

V — s- ... (4.2)dy x ay2
1 ^ P— ... (4.3)
P y

From the equation (4.3), we find that p does not depend on y. 
With t^tis, equation (4.2) gives that 

p---  = _ P
^ x
is constant.
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Then the equation (4.2) has the solution

V0 v
-y7 p

u » A + Be + -----
V.

... (4.4)
? °

where A and B are constants of integration and are to be 

determined from the boundary conditions.

y _ 0

y = h

u = o
U = U

... (4.5)

by using first boundary condition of (4.5) to equation (4.4) 

we get

0 = A + B ... (4.6)

by using second boundary condition of (4.5) to equation (4.4) 

we get

U * A + Be

v0 „~v

or u = - B + Be

V° h 
h

v_

or U = B -■]

? Vo

p
h -------h
f vo

p
+ ------ h

? Vo

u - ----- h
or b » ---------------------

£
Vo----h - 1

... (4.7)
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Hence
A

U
P

e
h 1 J

(4.8)

Substituting values of A and B in equation (4.4) we get

u

P
u - ----h r vo „ i

? Vo e T Y_ x
Yq_ h

e ^ - 1 J
(4.9)

The equation (4.9) gives the velocity distribution of 
Generalized plane coutte flow between two porous plate.

(a) Volume rate of flow

Volume rate of flow in the case of Generalized plane 
couette flow between two porous plates is given by

rhQ = J udy 
0

0
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Q JL 5!
f vo ~2

... (4.10)

(b) Skin friction ;

Skin friction in the case of Generalized plane 
couette flow between porous plates is given by

du
H ( — )y=o dy

( u----- h )
____y_^o__
( e V -1 )

d
■ mm mm

dy 1>
P

=
e y

h

1
(4.11)

(c) Coefficient of skin friction

Coefficient of skin friction in the case of 
generalized plane couette flow between two porous plates 
is given by
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r u
2ja

-P V-
V,$-h.]

VoT
-2 yV +

? Vc
... (4.12)

5* Generalized plane coutte flow between two co-axial 
infinite porous cylinders# when inner cylinder is 
moving with constant velocity U and outer is at rest.

Let a viscous fluid be flowing axially between two 
co-axial infinite porous cylinders of redii a and b (b 7 a) 
under a pressure gradient P = - 9 p/d x.

Let the inner cylinder be moving with a constant 
velocity U and outer cylinder be at rest. Suppose the velocity 
of injection of the inner cylinder is VQ and that of suction 
at outer cylinder are inversely proportional to their radii.

We use the cylindrical polar coordinates (r, 0# z) to 
discuss the flow. Let the flow be occurring in radial and 
axial directions and depending on radial distance only, i.e. 
let the Velocity vector be V( v(r)# o# u (r) )

Then the equation of continuity becomes 
dv v---- + --- as 0
dr r

or V = --- ... (5.1)
r

where *A' is a constant# and the Navier-Stokes equations of 
motion under the above hypothesis reduce to
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Using second boundary condition of equation (5.7) to 
equation (5.6) gives

U * ------- a2 + C-, am + C,
2^ (2-m)

Subtracting equation (5.8) from equation (5.9) we get

-P P (a2 - b2)

2ji,(2~m) 2)i (2-m) (am - bra)

(5.9)

Substituting this value in (5.8) we get

P
2 2 (2-m)

Ut/H
(am-bm)

P bm (a2 - b2)

2]j,(2-m) (am - bm)

Substituting values of and C2 in equation (5.6) we get

-P 2 Urm Pm (a2-b2)
u *------- r + ----- + —----- r2^ (2-m) a^b”1 2}i(2-m) / m -iru (a -b )

2>i(2-m)
b2. U m PjTO _ _____ _ £<am-5") 2|i(2-m)

m (a2-b2)
7a"*-3")

P
2 (2-m) ji

b2 2-r2 + b2 + —I?— (jP - iP) 
bm-am

„m v^mr -b
+ U m-iP

t_2 2b -a
U. SB

2 (2-m)ji
tr - -----(r1” - bm)

bm-am

iP-xP
U vjn mb -a

(5.10)
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2quation (5.10) gives the velocity distribution for 
Generalized plane couette flow between co-axial infinite 
porous cylinders.

6. Spiral flow between two co-axial cylinders when the 
outer and inner cylinders are rotating with constant
angular velocities.

We consider spiral flow between two co-axial cylinders of 
radii a and b (b ? a) such that the outer and inner 
cylinders are rotating with constant angular velocities 
COi and COx respectively and the inner cylinder is moving 
along the axis with velocity U. We use cylindrical co-ordinate 
system (r, e, z) and assume that there is only 0 and z 
components of velocity, which depend only on r i.e. the 
velocity vector is V (0, v(r), w(r) ).

Then the equation of continuity is i
satisfied and the Navier-Stokes equations of m<.RV ^ n

? B~r

reduce to

... (6.1)
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and
r = a : W = U ) ) ... (6.10)
r = b : W = 0 )

The equation (6.7) can be written as

rv = Ar2 + B ... (6.11)

Applying first and second boundary conditions of (6.9) to 
equation (6.11) we get

a2 * Aa2 + B ... (6.12)

b2 Cj2 ■ Ab2 + B ••• (6.13)

oubstracting equation (6.12) from (6.13) we get

(b2 CO 2 ” a2 601^ = A (b2 “ a2)
Hence b2 CO 2 " a2 to., ,

b2 - a2
Substituting this value of A in (6.12) we get

2 -2 -a b
B = — ■s —-— ( CO2 “ ) ... (6.15)b -a2

Substituting values of A and B in equation (6.7) we get 

1 a2b2V = ——————— (b2 CO 2 *" a2 CO t) r ” ———— (to 2 — CO .) ... (6.16)
(b2-a2) r

Applying the first and second boundary condition of (6.10) 
to equation (6.8) we get
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U = A log a + B 
0 * A log b + B

Subtracting (18) from (17) we get
*

U = A (log a - log b)
u

A * -----------------
log a - log b

or
A =

U
log (a/b)

Substituting this value in (6.17) we get 
U log a

U = ------- + B
log(a/b)

U log a
B = U - ---------

log (a/b)

B U
log (a/b) - log a 

log (a/b) _

B
-U log a 
log (a/b)

... (6.17) 

... (6.18)

... (6.191

... (6.20)

Substituting values of A and. B in equation (6.8) we get

U log r U log b
log (a/b) log (a/b)

u (log r - log b) 
log (a/b)
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U log (r/b)
W = ---------- ... (6.21)

log (a/b)

The equation (6.16) and (6.20) gives velocity 
distribution in @ and z direction respectively.

oOo
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