

The dissertation is divided into two parts.

<u>Part-I</u>: Spectrophotometric determinations of some metal ions with 2-acetyl thiophene guanylhydrazone.

<u>Part-II</u>: pH-Metric determinations of stability constants of guanylhydrazone complexes with some metal ions.

Part One

First part deals with the spectrophotometric determinations of some metal ions with 2-acetyl thiophene guanylhydrazone (ATG).

The first chapter includes synthesis and characterization of the reagent (ATG). It also deals with the literature survey of the reagent. Determinations of gold(III), palladium(II) and iron(III) are discussed in the chapters two, three and four respectively. The spectral characteristics of these metals are summarized in table 9.1. The applications of the reagent are given in table 9.2. The interference and tolerance limits of foreign ions are given for each element separately.

Table 9.1: Spectral characteristics of Metal-ATG complexes

Spectral	Metal-ATG complexes			
Characteristics	Au (III)	Pd (II)	Fe (III)	
Colour	Yellow	Yellow	Yellow	
λma×, nm	375	375	365	
рН	10.0	12.6	2.5	
Molar extinction coefficient,				
ex10 ⁴ 1 mole ⁻¹ cm ⁻¹	0.3131	0.7492	0.1197	
Validity of Beer's law, ppm	28.0	12.0	17.0	
Stoichiometry (M:L)	1:1	1:2	1:2	
Sandell's Sensitivity S,µg/cm ²	0.1210	0.0627	0.3503	
Degree of dissociation, à	0.1296	0.1395	0.0652	
Instability constant, K	3.9207×10 ⁻⁶	0.4011×10 ⁻¹⁰	0.1537×10 ⁻¹⁰	

Table 9.2 : Applications of the reagent, ATG.

Met	al ion	Analysis of	Certified value	Experimental value
Au (III)	Gold-copper-silver alloy	50.0 %	49.50 %	
		40.0 %	39.20 %	
Pd	(11)	Nī-Al catalyst	0.125 %	0.123 %
Fe	(111)	Iron ore	13.60 %	13.53 %

Part Two

Second part deals with the pH-metric determinations of stability constants of guanylhydrazone complexes with some metal ions.

The fifth and sixth chapters include introduction and experimental part of the work respectively. The seventh chapter deals with stability constants of 2-acetyl thiophene guanylhydrazone (ATG) with some metal ions. While eighth chapter reports the stability constant of 5-bromo-2acetyl thiophene guanylhydrazone (Br-ATG) with some metal ions. Stability constants of Cu⁺⁺, Ni⁺⁺, Co⁺⁺, Mn⁺⁺ and Cd⁺⁺ are given in table 9.3.

Table 9.3: Proton-ligand and metal-lignad stability constants.

	Proton-ligand stability	Metal-ligand stability constant				
	constant	Cu ⁺⁺	Ní ⁺⁺	Co ⁺⁺	Mn ⁺⁺	cd++
ATG	9.85	8.835	9.32	8.00	6.79	7.72
(Br-ATG)	8.645	7.365	8.035	7.725	6.905	6.50

Thus, it can be concluded that ATG is a fairly good photometric reagent for the determinations reported in the dissertation. While the reagents, ATG and (Br-ATG) have been used to study the formation constants with the metal ions reported in this.