CHAPTER-III

RESULTS AND CALCULATIONS OF DERIVED PARAMETERS

3.1 Electrolytes in Water :

The sound velocity and density data at 25° C obtained in the present work represented in figures 14 to 18 and 7, for binary solutions were used to calculate adiabatic compressibilities (β ad) at different concentrations of the solute by the following relation :

$$\beta ad = 1/u^2 d$$
 ----- (7)

The variation of sound velocity (u) and adiabatic compressibility (β ad) at 25⁰ C with concentration (molality) for aqueous solutions of NaCl, KCl and Bu₄NBr are shown in figures 14 to 22. The probable error in β ad can be calculated using expression :

$$\Delta\beta/\beta = 2\Delta u/u + \Delta d/d \qquad -----(8)$$

Where $\Delta\beta$, Δu and Δd represents uncertainty in determination of β , u and d respectively. The error in u and d are 0.5 m. sec⁻¹ and \pm 0.1 x 10⁻⁵ g.cm⁻³ respectively which makes the β values uncertain to \pm 0.01 x 10⁶ bar⁻¹. The table VII summarise5 the values of u, d and β ad at ≈ 0.2 and 0.8 m of electrolytes in water. The apparent molal volume (ϕ_V) of the solute has been calculated by utilising the density data obtained in the present work by using the equation :

$$\phi_{\rm v} = 1000 \ (do - d)/mddo + M_2/d$$
 ----- (9)

Where M_2 , m, d and do represent the molecular weight of the solute, molality of the solution, density of the solution and density of water respectively.

The probable error in the ϕ_V values at the lowest concentration has been calculated by using the equation.

$$\left[\Delta\phi_{v}\right]^{2} = \left[\delta\phi_{v}/\delta d\right] \cdot \left(\Delta d\right)^{2} + \left(\delta\phi_{v}/\phi_{m}\right) \cdot \left(\Delta m\right)^{2} \quad ---- \quad (10)$$

The error at $\frac{6}{10}$ lowest concentration is of the order of $\pm 0.5 \text{ cm}^3 \text{.mol}^{-1}$.

The $\phi_{\rm V}$ data for the salts is generally represented by equation :

$$\phi_{v} = \phi_{v}^{0} + S_{v} / \overline{m} + B_{v} m$$
 ----- (11)

Where S_v is Debye-Huckel limiting law slope for volume (=1.868 cm³.mol^{-3/2}) and B_v is an adjustable parameter signifying deviation due to ion-ion interactions. The appropriate function $\phi_v - S_v / \overline{m}$ are plotted against the molality of the salts in water (Fig.8). For the purpose of studying the reliability of the data, smooth extrapolations were made to arrive at ϕ_V^0 values and which are compared with literature data in Table VIII.

The apparent molal adiabatic compressibility values for the salts (${\varphi}_{_{\bf k}}$) were calculated by expression :

$$\phi_{k} = 1000 \ (\beta - \beta_{0})/mdo + \beta \phi_{v}$$
 ------ (12)

Where β and β_0 represents adiabatic compressibility values of solution and pure solvent respectively.

The probable error in the calculation of apparent molal compressibility ($\Delta \phi_k$) value has been calculated by using the equation.

$$\Delta(\phi_{k})^{2} = (\delta\phi_{k}/\delta\beta) \cdot (\Delta\beta)^{2} + (\delta\phi_{k}/\deltam)^{2} \cdot (\Delta m)^{2} + (\delta\phi_{k}/\delta\phi)^{2}$$
$$(\Delta d)^{2} \qquad (13)$$

The error at the lowest concentration is of the order $\pm 2 \times 10^4$ cm³ bar⁻¹ mol⁻¹. The ϕ_k for the salts can be represented by the equation :

$${}^{\phi}_{k} = {}^{\phi}_{k} + S_{k} \sqrt{m} + B_{k} m \qquad -----(14)$$

Where S_k is Debye-Huckel limiting law slope B_k also signifies the deviations due to solute-solute or ionion interactions. Figure 9 illustrates the ϕ_k , behaviour of

<u>Table VII</u> : Density, Sound Velocity and Adiabatic compressibility Values of aqueous solution of salts at 25° C.

Salt	Molality (m)	Density (d) g.cm ⁻³	Sound velocty (u) m.s ⁻¹	$\beta_{ad} \times 10^{12}$ dyn ⁻¹ .cm ²
NaC1	0.1976	1.004723	1510.0	43.65
	0.7937	1.028646	1545.5	40.70
. KCI	• 0.2006	1 005812	1507 5	43 75
KU1	0.7974	1.032502	1534.5	41.13
${f Bu}_4$ NBr	0.1949	1.001373	1542	42.00
	0.7968	1.014244	1642 ,	36.57

<u>Tablve VIII</u> : Apparent molal volumes and compressibilities of electrolytes at 25° C and nature of B_v parameters.

Colt	ϕ_{V}^{0} cm ³ mol ⁻¹		^B v	$\phi_{K}^{0} \times 10^{4} \text{ cm}^{3} \text{ dyn}^{-1} \text{ mol}^{-1}$		
Salt	Expt.	Lit.		Expt.	Lit.	
NaCl	18.1	16.62	-ve	- 47.5	- 50.0	
KC1	28.8	26.85	-ve	- 39.0	- 43.5	
Bu ₄ NBr	301.4	300.4	-ve	- 22.0	- 20.0	

.

salts in water. The values of ϕ_k^0 obtained on the basis of smooth extrapolation to the infinite dilution for different salts in water along with literature values are collected in table VIII.

3.2 Non-Electrolytes in Water :

The variation of sound velocity (u) and adiabatic compressibility (β ad) at 25^OC, with mole fraction (X₂) of DMF is shown in Figure 12.

Similarly the variation of ϕ_v and ϕ_k as a function of mole fraction (X₂) of DMF in the solution at 25^oC is shown in Fig. 13. Extrapolation to infinite dilution yields values of ϕ_v^o (74.6 cm³.mol⁻¹) and ϕ_k^o (4.5 x 10⁴ bar⁻¹ cm³.mol⁻¹) Figure 13.

The experimental results are given in table IX. The densities of the mixtures are given relative to pure H_2O , (do = 0.997047 g.cm⁻³). The relative values of β ad, ϕ_v and ϕ_k are also listed in the same table. Here X_2 is the mole fraction of DMF.

3.3 Electrolytes in Mixed Aqueous Solvents :

The densities and sound velocities of the solutions of NaCl, KCl and $Bu_A NBr$ in mixed aqueous solutions

<u>Table IX</u> : DMF - H_2O System, 25°C

x ₂	u m.s ⁻¹	1000 (d-d _o) g.cm ⁻³	βad x 10 ⁶ bar ⁻¹	^φ v cm ³ mol ⁻¹	[¢] _k x 10 ⁴ bar ⁻¹
0.000	1497.96	0.000	44.69	-	
0.021	1547.8	- 0.792	41.90	74.05	7.23
0.055	1603.6	- 0.693	39.03	73.58	11.18
0.099	1650.2	- 0.122	36.83	73.34	14.09
0.152	1681.0	+ 0.020	35.50	73.31	16.76
0.219	1689.0	- 1.489	35.21	73.52	19.77
0.318	1669.9	- 6.651	36.21	74.06	23.53
0.512	1601.0	- 18.801	39.88	75.05	29.10
0.700	1546.8	- 33.604	43.38	76.14	32.93
1.000	1459.3	- 52.470	49.71	77.38	38.46

-

of DMF have been determined at 25° C.

The adiabatic compressibilities (β ad) of salts were calculated by using sound velocity (u) and density (d) data and putting these in the Laplace equation.

The apparent molal volume (ϕ_V) and the apparent molal compressibility (ϕ_k) of the salts in ternary solutions were calculated by using the equations.

$$\phi_{\rm V} = \frac{1000 \ (d_0 - d)}{mdd_0} + \frac{M_2}{d} \qquad ----- \ (15)$$

Where M_2 , m, d and d_o represent the molecular weight of the salt, molality of the solution, density of the solution and density of solvent respectively.

$$\phi_{k} = \frac{1000 \ (\beta - \beta_{0})}{md_{0}} + \beta \phi_{v}$$
 ----- (16)

Where β and β_0 represent adiabatic compressibility values of solution and solvent respectively.

The variations of u and β ad as a function of molality of salt are exhibited in figures 14 to 22, and ϕ_{v}, ϕ_{k} as a function of square root of aquamolality for ternary systems are exhibited in figures 23 to 31.

The values of ϕ_V^0 obtained on the basis of smooth extrapolation in ternary solutions were used to

- <u>Table X</u>: Apparent molal volumes and compressibilities of salts in mixed aqueous solutions, nature of B'_V and B'_k parameter, $\Delta \phi^0_V$ and $\Delta \phi^0_k$ for the electrolytes from water to mixed DMF-H₂O solvent systems at 25^oC.
- a) NaCl in DMF- H_2O .

×2	$cm^{4}m^{\circ}v$	B'v	$\phi_k^{\circ} \times 10^6$ cm ³ bar ⁻¹ mol ⁻¹	B' k	$\Delta \phi^{0}_{V}$	∆¢° k
0.021	15.3	+ ve	- 123.0	+ ve	- 2.8	- 75.5
0.055	15.7	+ ve	- 40.0	+ ve	- 2.4	7.5
0.099	16.6	+ ve	- 30.2	+ ve	- 1.5	17.3
0.152	17.8	+ ve	- 26.1	+ ve	- 0.3	21.4
0.219	18.0	+ ve	- 20.9	+ ve	- 0.1	26.6
0.318	18.4	+ ve	- 16.3	+ ve	0.3	31.2

b) KCl in DMF-H₂O.

x ₂	$m^{\phi^{O}}_{cm^{3}mol}$ -1	B' V		B' V	$\Delta \phi^{0}_{\mathbf{v}}$	∆¢ ⁰ k
0.021	26.5	+ ve	- 33.3	+ ve	- 2.3	5.7
0.055	27.0	+ ve	- 31.4	+ ve	- 1.8	7.6
0.099	28.7	+ ve	- 29.2	+ ve	- 0.1	9.8
0.152	31.0	- ve	- 23.1	+ ve	2.2	15.9
0.219	31.3	- ve	- 20.2	+ ve	2.5	18.8

x ₂	$cm^{3}m^{\phi^O_V}_{mol}$ -1	B'v	$\begin{array}{c} \phi_{k}^{0} \times 10^{4} \\ \text{cm}^{3} \text{bar}^{-1} \text{mol}^{-1} \end{array}$	B¦ k	$\Delta \phi_{\mathbf{v}}^{\mathbf{o}}$	$\Delta \phi^{0}_{\mathbf{k}}$
0.0	301.4	- ve	- 22.0	+ ve	0.0	0.0
0.021	297.2	- ve	11.0	+ ve	- 4.2	33.0
.0.055	294.0	zero	19.0	+ ve	- 7.4	41.0
0.099	293.2	+ ve	36.5	+ ve	- 8.2	58.5
0.152	294.0	+ ve	61.0	+ ve	- 7.4	83.0
0.219	298.3	+ ve	72.5	+ ve	- 3.1	94.5
0.318	300.0	+ ve	81.0	+ ve	- 1.4	103.0
0.512	312.6	- ve	73.5	+ ve	11.2	95.5
0.700	302.5	- ve	52.5	+ ve	1.1	74.5
1.0	294.4	+ ve	- 10.0	+ ve	- 7.0	12.0

c) Bu_4^{NBr} in DMF-H₂O.

.

calculate the transfer functions ($\Delta \phi_V^0$), of salts from water to mixed aqueous solution at 25[°]C by using the equation :

 $(\Delta \phi_{v}^{0})_{t} = \phi_{v}^{0} \text{ (mixed aqueous-electrolyte)} - \phi_{v}^{0} \text{ (water-electrolyte)}$

Similarly, the values of ϕ_k^0 obtained by smooth extrapolation in ternary solutions were used for calculating the transfer functions $(\Delta \phi_k^0)_t$, of salts from water to mixed aqueous solutions at 25°C by using the equation : $(\Delta \phi_k^0)_t = \phi_k^0 (\text{mixed aqueous-electrolyte}) - \phi_k^0 (\text{water-electrolyte})$

The variation of $\Delta \phi_V^0$ as a function of mole fraction (X) of DMF is shown in Figure 32.

Similarly, the variation of $\Delta \phi_k^0$ as a function of mole fraction (X₂) of DMF is shown in Figure 33.

Fig.7

Fig.8

Fig. 9

Fig. 14

Fig. 15

Fig. 16

Fig. 21

Fig. 22

Fig. 22 (a)

Fig.23

Fig.26

Fig. 27

Fig. 28

Fig. 30

Fig. 32

