CHAPTER - V

¢

DETERMINATION OF OSMIUM (VIII)-

÷

5.1 INTRODUCTION

Osmium is one of the minor constituents of the natural platinum deposits. It occurs in association with other platinum metals in the form of osmiridium alloy. It exhibits +8 stable oxidation state in osmium tetroxide. Osmium tetroxide is an excellent hydrogenation catalyst, and is also used for hydroxylation of double bonds in the synthesis of certain organic compounds. Osmiridium alloy is used for making pen points. Osmium is encountered only as a component of special alloys in chemical analysis.

Numerous reagents have been proposed for the spectrophotometric determination of osmium. The various methods differ considerably in sensitivity, selectivity, tolerance to other ions, useful concentration range etc., and there appears to be scope for the development of further procedures giving enhanced sensitivity and selectivity.

Beamish¹⁻³ has critically reviewed the methods proposed for the spectrophotometric determination of osmium and other platinum metals. The methods for extraction and photometric determination of osmium have also been reviewed by various authors⁴⁻⁶.

Thiourea and its derivatives have been used for spectrophotometric determination of osmium. But thiourea is not very sensitive ($S = 50 \ \mu g/cm^2$) and also Ru(III) and Pd(II) interfere⁷. Os(IV) reacts with thiourea much more rapidly than does Os(VIII). Based on this, the procedure was developed by Rao et al. in which Os(VIII) was reduced by traces of As(III) before its complexation in a medium of 10% sulphuric acid⁸. Khopkar et al⁹ have

developed a procedure which involves the extraction of Os(IV) into TBP from 1.25 M HCl medium. But the sensitivity of the method is very low $(S = 100 \ \mu\text{g/cm}^2)$. Ru(III), Pb(II), Sb(III), Te(IV) and many other anions interfere.

Various substituted thiourea which have been proposed for osmium determination are 1-benzoyl-3-(2)-pyridyl-2-thiourea¹⁰, 1-benzoyl-3-(2-hydroxy-ethyl) and 1-benzoyl-3,3-bis (2-hydroxyethyl) thiourea¹¹, 1-benzoyl-3-(o-tolyl) thiourea¹², 1-benzoyl-3-(5-bromo-2-pyridyl) thiourea¹³, N-hydroxymethyl-and N N'-bis(hydroxymethyl)-thiourea¹⁴. For trace determination of osmium, new procedures based on its catalytic effect in specific redox reactions have been proposed¹⁵⁻¹⁷.

In some of the methods, the formation of the complexes is quite slow in aqueous media at room temperature, and condition for obtaining reproducible colour development are usually critical e.g. quinoxaline-2,3 dithiol¹⁸ (1.5 hours), 1-naphthylamine 4,6,8-trisulphonic acid¹⁹ (4 hours), tetramethyl thiourea disulphide²⁰ (2 hours), N-(4-hydroxy-3-methoxybenzilidene)p-morpholinoaniline²¹ (1 hour), thiocyanate²² (1 hour), 2-aminocyclopentane-1-carbodithioic acid²³ (10 minutes), phthalimide bis- thio semicarbazone²⁴ (30 minutes) and o-hydroxy thiobenzhydrazide¹⁸ (10 minutes).

The reagents which require heating of the aqueous phase for full colour development are ferrozine²⁵ (4 hours), 1-benzoyl-3-(o-tolyl) thiourea¹² (30 minutes), quinisatin oxime²⁶ (1-5 hours), acenaphthene quinone monoxime²⁷ (90 minutes at 100° c), 3-nitrosopyridine-2,6-diol²⁸ (30 minutes), ammonium thiocyanate²⁹, 1-naphthyl amine-4,6,8-trisulphonic acid¹⁹ (45 minutes at 40°c), pyrogallol³⁰ (30 minutes), 2,4,5-(triaminopyrimi dine-6-ol³¹ (20 minutes), tiron³² (15 minutes), thiocyanate-rhodomine-6G³³ (20 minutes).

The following reagents form the complexes with osmium which have either low stability or low sensitivity e.g. o-arsanilic acid³⁴ (S = 110 μ_g/cm^2), pyrocatechol³⁵ (S = 48 μ_g/cm^2), 2-amino-8-naphthol-3, 6-disulphonic acid³⁶ (S = 200 μ_g/cm^2), 1-benzoyl-3-(5-bromo-2-pyridyl) thiourea¹³ (S = 53 μ_g/cm^2), 2-mercaptopyrimidine-3-ol³⁷ (S = 58 μ_g/cm^2) and promethazine hydrochloride³⁸ (stability 35 minutes in 4M HCl).

Sanke Gowda et al have reported the series of organic azine compounds including promethazine hydrochloride³⁸, chlorpromazine hydrochloride³⁹, thioridaz.ne hydrochloride⁴⁰, diethazine hydrochloride⁴¹, trifluo-perazinedihydrochloride⁴² and promazine hydrochloride⁴³ for the photometric determination of osrrium in HCl medium. However there are interferences of Pd(II), Au(III), Fe(III), Pt(IV) and other platinum metals and a large number of common anions.

For photometric determination of osmium in aqueous medium, various reagents have been recommended. These are quinoxaline-2,3-dithiol¹⁸, trichloro perazine dihydrochloride⁴², naphthalene 2,3-diol⁴⁴, 3-nitrosopyridine -2,6-diol²⁸, m-aminobenzoic acid⁴⁵ and 1-naphthylamine-4,6,8-trisulphonic acid¹⁹. Although these methods appear to be sensitive, they are subject to interferences from many metal ions including transition as well as platinum group metals.

Some extractive spectrophotometric methods which suffer from the interferences are tetramethyl thiourea disulphide²⁰, 2-(3-benzoyl thioreido) benzoic acid⁴⁶, thiosemicarbazone of 6-methyl piconaldehyde⁴⁷, bismuthiol-II⁴⁸ and thiobenzhydrazide⁴⁹.

Singh et al. reviewed the analytical aspects of the chemistry of substituted pyrimidine thiol⁵⁰ as selective reagents for determination of osmium. The complexes have sensitivities ranging from 6 to 13 μ g/cm². No attempts were made to investigate the application of the method.

Recently, spectrophotometric determination of osmium(VIII) was studied by the reagents as 2-methyl, 1,4-naphthoquinone-4-oxime⁵¹, 2-thiobarbituric acid⁵², 4-sulfo-2-aminobenzene thiol⁵³, pyrocatechol and hydroxyamidine⁵⁴, N'-benziloyl-N-sulphonyl hydrazine⁵⁵, 1-hydroxy-2-pyridinethione⁵⁶ (sodium salt), 4-(2-pyridylazo) resorcinol⁵⁷, 2,2'-diaminodiphenyl disulfide⁵⁸, 2,3,7-trihydroxy-9-(p-nitrophenyl) fluorone⁵⁹, 3-(4-phenyl-2-pyridyl)-5,6-diphenyl -1,2,4-triazine⁶⁰ with sodium tetraphenyl borate and 1,5-diphenylcarbazide⁶¹

Osmium(VIII) was determined by extractive photometric methods by the reagents such as 3,4-dihydro-4,4,6-trimethyl-2-(1H) pyrimidinethione⁶², thiopyrine⁶³, aza analogs of dibenzo-18-crown-6⁶⁴, N'-(2-hydroxybenzoyl)-N-(4-tolysulphonyl) hydrazene⁶⁵, 4-(2-pyridylazo) resorcinol⁶⁶, and N'-benziloyl -N-phenyl sulfonyl hydrazine⁶⁷.

Sensitive spectrophotometric determination of osmium(VIII) in Os(VIII)-tin(II) chloride-rhodamine B^{68,69} system, Os(VIII)-SnCl₂-malachite green⁷⁰ system, Os(VIII)-SCN-ethyl violet⁷¹ system and Os(VIII)-halide (or SCN)-methylene blue⁷² system were also studied.

By spectrophotometric method, $O_s(VIII)$ was determined by means of catalytic effects on the oxidation of pyrogallol red⁷³ by potassium bromate and on the oxidation of phthaline⁷⁴ with hydrogen peroxide.

The yellowish orange complex of osmium with proposed reagent 2-benzoyl pyridine guanylhydrazone (BPG) is formed at pH 3.0 and measured at 435 nm, against the reagent blank. The method is highly selective and can also be applied for the determination of osmium in synthetic mixtures.

5.2 EXPERIMENTAL

5.2.1 Standard Solutions :

Standard osmium(VIII) solution :

Osmium tetroxide is volatile and reacts with skin and eyes to form a deposits of metallic osmium. Therefore, direct contact with the solid and its vapour should be avoided.

c

Osmium(VIII) solution was conveniently prepared as described by Ayres and Wells⁷⁵ as follows : A 1.0 g ampule of osmium tetraoxide (Johnson-Matthey) was scratched with a file and then weighed. The weighed ampule is dropped into a thick walled glass stoppered bottle containing about 100 ml of 0.2 M sodium hydroxide solution. The bottle is shaken until the glass ampule breaks. When all the osimum tetroxide is dissolved to give an orange-red solution, most of the supernatant liquid is carefully transferred into a 1 litre volumetric flask. The glass stoppered bottle is rinsed with successive portion of 0.2 M sodium hydroxide. The washings are transferred to the same volumetric flask. Care should be taken so that no narm is done in leaving all the glass fragments inside the bottle. The solution is made upto volume with 0.2 M sodium hydroxide solution. The glass fragments are dried and weighed. The weight of the osmium tetroxide used to prepare the solution is thus obtained by difference.

This solution was standardised by the method of $Klobbie^{76}$ as follows:

To 25 ml of the solution, 15 ml of 6 M sulphuric acid and 2.0 gm of potassium iodide were added. The liberated iodine was titrated with standardised 0.01 N sodium thiosulphate. The difficulty in determining the end point on account of the green colour of the reduced osmium was circumvented by adding 5 ml of benzene and titrating with standard sodium thiosulphate until a colourless layer of benzene was obtained. The working solution (90 μ g/Os(VIII)/ml) was prepared by appropriate dilution of the stock solution with distilled water.

Reagent (BPG) solution :

0.6 mg/ml in distilled ethyl alcohol (2.5 x 10^{-3} M).

Buffer solution :

Buffer solution was prepared by dissolving appropriate amounts of citric acid and disodium hydrogen phosphate.

Potassium thiocyanate solution :

4.0 % of KCNS in distilled water.

5.2.2 Recommended Procedure :

In a 10 ml volumetric flask, an aliquot of the solution containing 137 μ g of osmium(VIII) was taken. To it, 1.5 ml of the reagent (BPG) solution (2.5 x 10⁻³M) and 0.6 ml of 4.0 % KCNS solution were added. The pH of the solution was adjusted to 3.0 with buffer solution. It was then diluted upto the mark with distilled water. The absorbance of the Os (III)-BPG complex was measured at 435 nm against reagent blank. The concentration of osmium was determined from a calibration curve.

5.3 RESULTS AND DISCUSSION

5.3.1 Spectral Characteristics :

The absorption spectrum of the complex of Os (III)-BPG having the concentration 7.20 x 10^{-5} M was recorded at pH 3.0 against reagent blank. (Table 5.1, Figure 5.1). The spectrum of the complex has an absorption maximum at 435 nm. The molar extinction coefficient of the complex is 0.2986 x 10^4 l mole⁻¹ cm⁻¹. The reagent does not absorb in this region.

ç

Worreleyste	Absorbance		Molar extinction coefficient, ϵ			
λ , ^{nm}	Os(III)-BPG complex 7.20x10 ⁻⁵ M	BPG, reagent 2.5x10 ⁻⁴ M	Os(III)-BPG complex $\epsilon \times 10^4$ l mole ⁻¹ cm ⁻¹	BPG, reagent Ex10 ⁴ l mole ⁻¹ cm ⁻¹		
400	0.155	0.095	0.2152	0.0380		
410	0.160	0.090	0.2222	0.0360		
415	0.170	0.080	0.2361	0.0320		
420	0.180	0.075	0.2500	0.0300		
425	0.195	0.0 70	0.2638	0.0280		
430	0.205	0.065	0.2847	0.0260		
435	0.215	0.060	0.2986	0.0240		
440	0.210	0.055	0.2916	0.0220		
445	0.200	0.050	0.2777	0.0200		
450	0.190	0.045	0.2638	0.0180		
460	0.180	0.035	0.2500	0.0140		
470	0.175	0.030	0.2430	0.0120		
480	0.165	0.030	0.2291	0.0120		
500	0.135	0.020	0.1875	0.0080		
520	0.100	0.010	0.1388	0.0040		
540	0.070	0.005	0.0972	0.0020		
560	0.050	-	0.0694	_		
580	0.030	-	0.0417	-		
600	0.025	-	0.0347	-		
620	0.015	-	0.0208	-		
640	0.010		0.0138			
680	0.010	-	0.0138	-		
~ ~ ~						

Table 5.1 : Absorbances and molar extinction coefficients of the Osmium(III)-BPG complex and reagent (BPG)

......

5.3.2 Effect of pH :

The effect of pH of the solution on the absorbance of the complex was studied by preparing a series of solutions containing 1.0 ml of 0.07 mg/ml of osmium(VIII) and 0.8 ml of 2.5 x 10^{-3} M reagent (BPG) at different pH values from 1.5 to 12.0. The absorbances were measured at 435 nm against corresponding reagent blank. At the pH range 2.0 to 4.0, maximum and constant absorbance was observed. Therefore pH 3.0 was selected as the optimum pH for further studies. The observations are given in table 5.2 (Figure 5.2).

Table 5.2 : Effect of pH

 $[Os(VIII)] = 3.68 \ 10^{-5} \text{M}; [BPG] = 2.0 \times 10^{-4} \text{M}$

pН	Absorbance at 435 nm
1.5	0.100
2.0	0.165
2.7	0.165
3.2	0.165
4.0	0.165
4.8	0.085
6.5	0.050
7.4	0.045
9.3	0.041
10.4	0.035
11.5	0.035
12.0	0.035

5.3.3 Effect of Reagent Concentration :

A series of solutions were prepared in which the volume of 2.5×10^{-3} M reagent was varied from 0.4 ml to 2.4 ml, while the concentration of osmium was kept constant at 7.61 x 10^{-5} M. The complex was developed as per recommended procedure. The results in the table 5.3 show that six fold molar excess of the reagent is sufficient for full colour development (Figure 5.3).

Fable	5.3	;	Effect	of	reagent	concent	ra	tion		
		[Os	s(VIII)] =	= 14	.0 ppm;	[BPG]	=	2.0	۔ ۲	10 ⁻⁴ M

ml of reagent	Absorbance at 435 nm
0.5	0.08
0.8	0.12
1.0	0.13
1.5	0.15
2.0	0.15
2.5	0.15

5.3.4 Effect of Potassium Thiocyanate Solution :

A series of solutions were prepared in which the volume of 4.0 % KCNS was varied from 0.1 ml to 1.0 ml. The concentrations of osmium at 7.0 ppm, and 0.8 ml of the reagent, BPG (2.5 x 10^{-4} M) were kept constant. The complex was developed as per recommended procedure. The results in table 5.4 show that 0.6 ml of 4.0 % KCNS was sufficient for full colour development of Osmium (III)-BPG complex (Figure 5.4).

FIG.5.3 - EFFECT OF REAGENT CONCENTRATION.

FIG.5.4 - EFFECT OF KCNS CONCENTRATION .

Amount of KCNS added, ml	Absorbance at 435 nm
0.1	0.12
0.2	0.13
0.4	0.15
0.6	0.16
0.8	0.16
1.0	0.16

Table 5.4 : Effect of potassium thiocyanate concentration

 $[Os(VIII)] = 7.0 \text{ ppm}; [BPG] = 2.5 \times 10^{-4} \text{M}; \text{ KCNS} = 4.0 \%$

5.3.5 <u>Stability and Time Effect</u> :

The complex formation is instantaneous and independent upon temperature. The colour of the complex is stable for several hours.

5.3.6 Validity of Beer's Law :

The measurement of the absorbance of Os (III)-BPG complex at 435 nm from the solution containing various amounts of osmium and same amount of reagent (BPG) i.e. 3.0 ml of 5.0 x 10^{-5} M showed that Beer's law is valid upto 22.0 ppm of Os(VIII). (Table 5.5, Figure 5.5).

Ringbom plot⁷⁷ as obtained by plotting the percentage transmittance at 435 nm against $-\Delta c/c/\Delta P$ revealed the optimum concentration range, where the curve has greatest slope to be 9.0 to 22.0 ppm of metal (Figure 5.6).

FIG. 5.6 - RINGBOM PLOT.

Amount of Os(VIII), ppm	Absorbance at 435 nm	Transmittance, %	-(дс/с)/др
4.0	0.095	80.3	5.60
8.0	0.19	64.6	3.57
12.0	0.28	52.5	2.96
16.0	0.36	43.6	2.78
20.0	0.44	36.3	2.72
24.0	0.52	30.2	2.77
28.0	0.58	26.3	2.89
32.0	0.64	22.9	3.00
36.0	0.67	21.3	3.10
40.0	0.69	20.4	3.11

Table	5.5	:	Validity	of	Beer's	s l	aw
-------	-----	---	----------	----	--------	-----	----

 $[BPG] = 5.0 \times 10^{-5} M$

5.3.7 <u>Composition of the Complex</u> :

The composition of the Os(III)-BPG complex was studied by Job's method of continuous variation⁷⁸ (Table 5.6, Figure 5.7) mole ratio method⁷⁹ (Table 5.7, Figure 5.8) and slope ratio method⁸⁰. Job's plot indicated the formation of 1:1 complex of Os (III)-BPG and this composition was confirmed by mole ratio and slope ratio methods.

c

[Os(VIII]],	[BPG],	[BPG]	Absorbance at λ		
in l	ml	[Os(VIII)] + [BPG]	435 nm	455 nm	
4.0	0.0		_		
3.6	0.4	0.1	0.27	0.19	
3.2	0.8	0.2	0.46	0.33-	
2.8	1.2	0.3	0.54	0.42	
2.4	1.6	0.4	0.60	0.49	
2.0	2.0	0.5	0.62	0.51	
1.6	2.4	0.6	0.52	0.47	
1.33	2.66	0.66	0.46	0.38	
1.2	2.8	0.7	0.42	0.36	
1.0	3.0	0.75	0.39	0.34	
0.8	3.2	0.8	0.28	0.23	
0.4	3.6	0.9	0.18	0.12	
0.0	4.0	1.0	-	-	

Ę

Table 5.6 : Job's continuous variation method

 $\left[\text{Os(VIII)}\right] = \left[\text{BPG}\right] = 10.5 \text{ x } 10^{-5} \text{M}$

1 - 435 nm; II - 460 nm.

[Os(VIII)],	ΓBPG∃,	[BPG]	Absorba	nce at ג
m1	ml	[Os(VIII)]	435 nm	460 nm
2.0	0.0	-	-	-
2.0	0.5	0.25	0.175	0.12
2.0	1.0	0.50	0.28	0.24
2.0	1.5	0.75	0.42	0.36
2.0	2.0	1.00	0.505	0.43
2.0	2.5	1.25	0.54	0.475
2.0	3.0	1.50	0.55	0.485
2.0	3.5	1.75	0.565	0.50
2.0	4.0	2.00	0.565	0.50

Table 5.7 : Mole ratio method

 $\left[Os(VIII)\right] = \left[BPG\right] = 8.5 \times 10^{-5}M$

Hence, the probable structure for Os(III)-BPG complex may be shown as :

5.3.8 <u>Sensitivity</u>:

The osmium (III) complex of BPG does not show sensitivity towards light. The Sandell's sensitivity⁸¹ of the complex was found to be $0.2020 \ \mu\text{g/cm}^2$ at 435 nm.

5.3.9 Degree of Dissociation and Instability Constant :

The degree of dissociation was calculated from the mole ratio plot. The value of degree of dissociation (\propto) was found to be 0.0818. The apparent instability constant⁸² was found to be 7.288 x 10⁻⁷ for Os (III)-BPG complex.

5.3.10 Reproducibility of the Method :

In order to study the reproducibility of the method, different amounts of osmium were determined. The results in table 5.8 show that the method is reproducible.

Table	5.8	:	Reproducibility	of	the	method
-------	-----	---	-----------------	----	-----	--------

Mean absorbance of five observations	Standard deviation	Coefficient of variation, %
0.13	0.0018	1.384
0.22	0.0026	1.181
0.31	0.0040	1.290
0.41	0.0048	1.170
	Mean absorbance of five observations 0.13 0.22 0.31 0.41	Mean absorbance of five observationsStandard deviation0.130.00180.220.00260.310.00400.410.0048

5.3.11 Effect of Diverse Ions :

Various ions were added to a sample containing a fixed amount of osmium (28.0 ppm) and the colour was developed and measured as per recommended procedure. The tolerance limit was assumed to be the amount of foreign ion needed to cause an error less than 2% in absorbance values.

It is found that Cu(II), Ni(II), Fe(III), thiosulphate ion, $EDTA^{-4}$ and thiourea interfere seriously and can be tolerated in presence of appropriate masking agents. For example ;Cu(II) was masked by using sodium thiosulphate. The tolerance limits of Pb(II) and acetate ion are 110 and 160 ppm respectively. The tolerance limits of other ions are listed in table 5.9.

٩

[Os(VIII)] = 28.0 ppm [BPG	$ = 2.5 \times 10^{-4} M $
Foreign ions	Added as Tole	erance limit, ppm
Cations :		
Zn(II)	$ZnSO_4 \cdot 7H_2O$	18
Ba(II)	$BaCl_2 \cdot 2H_2O$	12
Bi(III)	BiCl ₃	28
Zr(IV)	ZrSO4	14
T1(I)	TICI	92
Se(IV)	Na ₂ SeO ₃	60
Mg(II)	MgCl ₂ . 6H ₂ O	85
Sn(II)	SnCl ₂ . 2H ₂ O	40
Pb(II)	Pb(NO ₃) ₂	110
In(III)	$InCl_3$, $4H_2O$	24
U(VI)	$U_{2}(NO_{3})_{2}$. $6H_{2}O$	32
Mn(II)	$MnSO_4$. H_2O	16
Cu(II)	$CuSO_4 \cdot 5H_2O$	None
Ni(II)	NiSO ₄ . $6H_2O$	None
Fe(III)	$FeCl_3 \cdot 6H_2O$	None
Anions :		C
Phosphate	Potassium hydrogen phosphate	105
Thiosulphate	Sodium thiosulphate	None
Oxalate	Potassium oxalate	90
EDTA ⁻⁴	Disodium salt	None
Borate	Sodium borate	25
Acetate	Sodium acetate	160
Thiourea	Thiourea	None

Table 5.9 : Effect of diverse ions

5.4 <u>APPLICATIONS</u>

Determination of Osmium(VIII) in Synthetic Mixtures :

In order to confirm the usefulness of the reagent, the proposed method was applied for the determination of Os(VIII) in various synthetic mixtures.

Various synthetic mixtures were prepared. Suitable aliquots were taken and analysed as per recommended procedure. The results of analyses are summarised in table 5.10.

Table	5.10	:	Determination	of	Os(VIII)	in	synthetic	mixtures*
-------	------	---	---------------	----	----------	----	-----------	-----------

Composition of synthetic mixture, پر	Os(VIII) found, یر	Relative mean error, %
Os(VIII) - 100 Ir(III) - 50 Mo(VI) - 75	99.1	0.90
Os(VIII) - 200 Pt(IV) - 30 Sb(III) - 100	198.9	0.55

* Triplicate determinations.

5.5 <u>REFERENCES</u>

- Beamish, F.E., "The Analytical Chemistry of Noble Metals", Oxford, Pergamon, P. 366 (1966).
- Beamish F.E. and Van Loon, J.G., "Recent Advances in the Analytical Chemistry of the Noble Metals," Oxford, Pergamon, P. 306 (1972).
- 3. Beamish, F.E. and Van Loon, J.C., "Analysis of Noble Metals : Overview and Selected Methods", Academic Press, New York (1977).
- 4. De, A.K., Khopkar, S.M. and Chalmers, R.A., "Solvent Extraction of Metals," London, Van Nostrand-Reinhold, P.88, 98 (1970).
- 5. Boltz, D.E. and Mellon, M.G., Anal. Chem., <u>46</u>, 234 (1974).
- Ginburg, S.I., Ezerskaya, N.A., Prokof'eva, I.V., Fedorenko, N.V., Shienskaya, V.I. and Bel'skii, N.K., "Analytical Chemistry of Platinum Metals," Jerusalem Keter, P. 266, 434 (1975).
- Sandell, E.B., "Colorimetric Determination of Traces of Metals,"
 3rd Ed., Interscience Publishers, Inc. New York, P.702 (1965).
- 8. Naidu, P.P. and Rao, G.G., Microchem. J., <u>18</u>, 422 (1973).
- Khopkar, S.M. and Kalyanraman, S., Anal. Chim. Acta, <u>78</u>, 231 (1975).
- Shome, S.C. and Mazumdar, D.K., J. Indian Chem. Soc., <u>54</u>, 599 (1977).
- 11. Bhowal, S.K., Indian J. Chem., <u>13</u>, 92 (1975).
- 12. Ibid. Idem., Curri. Sci., <u>44</u>, 157 (1975).
- Mazumdar, D.K. and Shome, S.C., Fresenius Z. Anal. Chem., 286, 249 (1977).
- Casassas, E., Rauret, G. and Rubio, R.; An. Quim. Ser. B, <u>79</u>, 284 (1983).
- Mueller, H. and Otto, M., Z. Chem. LPZ., <u>14</u>, 159 (1974),
 A.A. <u>27</u>, 3299 (1974).

- Lukovskaya, N.M. and Terktskaya, A.V., Ukr. Khim. Zh., <u>40</u>, 1193 (1974), A.A. <u>28</u>, 323 (1975).
- Guzman, M.D., Perez-Bendito and Pino, F., Anal. Chim. Acta, 83, 259 (1976).
- 18. Janota, H.F. and Choy, S.B., Anal. Chem., <u>46</u>, 670 (1974).
- 19. Steel, E.L. and Yoe, J.H., Anal. Chim. Acta., 20, 205 (1959).
- 20. Uttarwar, R.M. and Joshi, A.P., Microchim. Acta., 421 [1977(I)].
- 21. McDonald, C.W. and Ayres, G.H., Anal. Chim. Acta., <u>30</u>, 40 (1964).
- 22. Wierama, J.H. and Lott, P.E., Anal. Chem., <u>39</u>, 674 (1967).
- 23. Dutt, N.K. and Seshadri, T., Anal. Chim. Acta, <u>47</u>, 571 (1969).
- 24. Guzman, M., Perez-Bendito, D. and Pino, P.F., Anal. Chim. Acta., <u>83</u>, 259 (1976).
- 25. Kundra, S.K., Katyal, M. and Singh, R.R., Curri. Sci., <u>44</u>, 548 (1975).
- 26. Ayres, G.H. and Briggs, T.C., Anal. Chem. Acta., 26, 340 (1962).
- 27. Sindhwani, S.K. and Singh, R.P., Microchem. J., <u>18</u>, 627 (1973).
- 28. McDonald, C.W. and Carter, R., Anal. Chem., <u>41</u>, 1478 (1969).
- 29. Qureshi, M. and Mathur, K.M., Z. Analyt. Chem., <u>242</u>, 159 (1968).
- 30. Faye, G.H., Anal. Chem., <u>37</u>, 259 (1965).
- Jain, P., Katyal, M. and Singh, R.P., J. Indian Chem. Soc., <u>57</u>, 944 (1980).
- 32. Majumdar, A.K. and Savariar, C.P., Anal. Chim. Acta., <u>21</u>, 146 (1959).
- Jaya, S. and Ramakrishna, T.V., Bull. Chem. Soc. Japan, <u>55</u>, 2633 (1982).
- Gangopadhyay, S. and Gangopadhyay, P.K., Fresenius Z. Anal. Chem. 286, 251 (1977).
- 35. Naidu, P.P. and Rao, G.G., Microchim. Acta., 884 (1970).

- 36. Agrawal, B.V. and Ghose, A.K., Talanta, <u>20</u>, 627 (1973).
- Mehta, Y.L., Garg, B.S. and Singh, R.P., J. Indian Chem. Soc., 54, 423 (1977).
- Sanke Gowda, H. and Ramappa, P.G., J. Indian Chem. Soc., <u>54</u>, 688 (1977).
- 39. Ibid. idem., Indian J. Chem., Sect. A, 15, 762 (1977).
- 40. Sanke Gowda, H. and Ramappa, P.G., Curri. Sci., <u>45</u>, 615 (1976).
- 41. Ibid. idem., Anal. Chim. Acta., <u>84</u>, 189 (1976).
- 42. Ibid. idem., Z. Analyt. Chem., 282, 141 (1976).
- 43. Puzanowska-Tarasiewicz, Helena; Kojlo, Anatol. and Zawadzka, Ludmila, Microchem. J., <u>26</u>, 360 (1981).
- 44. Rao, P.V., Krishna and Satyanarayana, A., Chemia. Analit., <u>21</u>, 737 (1976).
- 45. Majumdar, A.K. and Sengupta, J.G., Z. Anal. Chem., <u>179</u>, 13 (1961).
- 46. Majumdar, A.K. and Bhowal, S.K., Anal. Chim. Acta., <u>35</u>, 479 (1966)
- 47. Lopez.-Ferhender, J.M., Valcarcel, M. and Pino-Perez, F., An. Quim., <u>71</u>, 789 (1975).
- 48. Majumdar, A.K. and Bhowal, S.K., Anal. Chim. Acta., <u>62</u>, 223 (1972)
- 49. Shome, S.C., Gangopadhyay, P.K. and Gangopadhyay, S., Talanta, 23, 851 (1976).
- 50. Singh, A.K., Mukherjee, B., Singh, R.P. and Katyal, M., Talanta, <u>29</u>, 95 (1982).
- 51. Shravah, K. and Sindhwani, S., Bull. Chem. Soc., <u>60</u>, 1135 (1987).
- 52. Morelli, B.; Analyst; <u>112</u>, 1395 (1987).
- 53. Chakrabarty, A.K.; Indian J. Chem., Sect. Á.; <u>27</u>A, 366 (1988).
- 54. Delo, M.K., Mishra, N., Patel, K.S. and Mishra, R.; Analyst, <u>116</u>, 325 (1991).
- 55. Vorob'eva, N.E., Pavlov, P.T. and Zhivopistsev, V.P.; Zh. Anal. Khim., <u>46</u>, 1088 (1991).

- 56. Ahmedzadeh, H., Safavi, A. and Massoumi, A., J.Sci. Islamic Repub. Iran; 1 (4), (1990).
- 57. Mori, I., Fujita, Y. Toyoda, M. and Hasegawa, Y.; Talanta, <u>39</u>, 535 (1992).
- 58. Chakrabarti, S.K., Chakrabarti, A.K. and Bag, S.P.; Proc. Indian Natl. Sci., Acad., Part A; <u>57</u>, 459 (1991).
- 59. Zhao, Li and Hu, S.; Fenxi Huaxue; 20, 584 (1992).
- 60. Kumar, A., Shukla, R., Agarwal, R.S., Satake, M. and Nagahiro, T.; Chim. Acta, Turc., 18, 477 (1990).
- Li, L., Li, D. and Zang, S.; Gaodeng Xuexiao Huaxue Xuebao;
 <u>11</u>, 144 (1990).
- 62. Akhond, M., Safavi, A. and Massoumi, A.; Anal. Lett.; <u>20</u>, 29 (1987).
- 63. Andzaparidze, D.I. and Akimov, V.K.; Izv. Akad. Nauk Gruz SSR Ser Khim., <u>14</u>, 179[°](1988).
- 64. Bekleynishev, M.K., Kuzimin, N.M. and Zolotov, Yu. A.; Zh. Anal. Khim.; 44, 356 (1989).
- 65. Vorob'eva, N.E., Zhivopistsev, V.P. and Pavlov, P.T.; Zavod. Lab.; 55, 15 (1989).
- Dadfarnia, S. and Shamsipur, M.; Bul. Chem. Soc. Jpn.; <u>64</u>, 3063 (1991).
- 67. Vorob'eva, N.E., Pavlov, P.T. and Zhivopistsev, V.P.; Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Technol; 34, 17 (1991).
- 68. Balcerzak, M.; Analyst; <u>113</u>, 129 (1988).
- 69. Balcerzak, M. and Kowalczyk, A.; Chem. Anal.; <u>33</u>, 519 (1988).
- 70. Li, Z. and Zhao, M.; Fenxi Huaxue; <u>17</u>, 118 (1989).
- 71. Li, Z. and Xu, Q.; Yankuang Ceshi; 8, 179 (1989).
- 72. Xu, Q., Fu. Y., Xu, X. and Zhou, Z.; Fenxi Huaxue; <u>14</u>, 721 (1986).

- 73. Ensafi, A.A. and Safavi, A.; Anal. Chim. Acta; 244, 231 (1991).
- 74. Hu, Z., He, X. and Cai, Y.; Guijinshu; <u>11</u>, 35 (1990).
- 75. Ayres, G.H. and Wells, W.N.; Analyt. Chemistry; <u>22</u>, 317 (1950).
- 76. Klobbie, E.A.; Chem. Zbl.; <u>11</u>, 65 (1898).
- 77. Meitis, L., "Handbook of Analytical Chemistry," 1st Ed., McGraw Hill Book Co., New York, P. 647 (1963).
- 78. Job, P.; Compt. Rend.; <u>180</u>, 928 (1925). Ann. Chim. (Paris), <u>9</u>, 113 (1928).
- 79. Yoe, J.H. and Jones, A.L.; Ind. Eng. Chem.; Anal. Ed., <u>16</u>, 111 (1944).
- 80. Harvey, A.E. and Manning, D.L.; J. Am. Chem. Soc., <u>72</u>, 4488 (1950).
- Sandell, E.B., " Colorimetric Determination of Traces of Metals," 3rd Ed., Interscience Publishers, Inc., New York, P.84 (1965).
- 82. Trikha, K.C., Katyal, M. and Singh, R.P.; Talanta, 14, 977 (1967).