APPENDIX - 4

MODE OF X^{2} (Chi-square) CALCULATION.

To test the hypothesis that "there is no significant difference between ONIDA and ORSON colour television sets regarding objective and subjective factors", which was preffered by their respective consumers, Chi-square test was applied and the mode of Chi-square calculation is as below:

For example : The table below shows the preferences obtained by ONIDA and ORSON to attractive appearance from their 100 customers each.

Brands								
	1st	2nd	3rd	4 th	5 th	6 th	Total	
ONIDA	26	24	12	17	-	-	79	
ORSON	24	30	10	10	8	8	90	
Total	50	54	22	27	8	8	169	

Solution : To test the hypothesis that "there is no significant difference between ONIDA and ORSON colour TV sets regarding attractive appearance, Chi-square test is applied.

Weightages were allotted to the consumer preferences, $1,2,3, \ldots 6$ to $6,5,4, \ldots 1$, for example:

ONIDA $-26 \times 6=156,24 \times 5=120$.
ORSON : $24 \times 6=144,30 \times 5=150$.

Brands	Preferences						Total
	1st	2nd	3 rd	4th	5 th	6th	
ONIDA	156	120	48	51	--	--	375
ORSON	144	150	40	30	16	8	388
Total	300	270	88	81	16	8	763

From the above observed preferences, expected preferences were computed by using the formula:

Expected preference $=\frac{\text { Total of row X Total of column }}{\text { Grand Total }}$
The expected preferences were obtained as follows:

CNIDA

1. for first row, first column $=\frac{300 \times 375}{763}=147.44$
2. " " " 2nd " $=\frac{270 \times 375}{763}=132.70$
3. " " " 3rd " $=\frac{88 \times 375}{763}=43.25$
4. * " $*$ th $\quad=\frac{81 \times 375}{763}=39.81$
5. " " " 5th " $"=\frac{16 \times 375}{763}=7.86$
6. " " " 6th " $=\frac{8 \times 375}{763}=3.93$
7. for second row, first column $=\frac{\frac{\text { ORSON }}{300 \times 388}}{763}=152.56$
8. " " " 2nd " $=\frac{270 \times 388}{763}=137.30$
9. " " " 3rd " $=\frac{88 \times 388}{763}=44.75$
10." " " 4th $\quad=\frac{81 \times 388}{763}=41.19$
11." " " 5th " $"=\frac{16 \times 388}{763}=8.14$
10. " " " 6th " $=\frac{8 \times 388}{763}=4.07$

Applying X^{2} test:

Applying X^{2} test:

$\begin{aligned} & \mathrm{Sr} . \\ & \mathrm{No} . \end{aligned}$	Observed (0)	Expected (E)	(0-E)	$(0-E)^{2}$	$\frac{(0-E)}{E}{ }^{2}$
1.	156	147.44	8.56	73.27	0.497
2.	120	132.70	12.70	161.29	1.216
3.	48	43.25	4.75	22.56	0.522
4.	51	39.81	11.19	125.22	3.146
5.	-	7.86	7.86	61.78	7.860
6.	-	3.93	3.93	15.45	3.930
7.	144	152.56	8.56	73.27	0.480
8.	150	137.30	12.70	161.29	1.175
9.	40	44.75	4.75	22.56	0.504
10.	30	41.19	11.19	125.22	3.040
11.	16 8	8.14	7.86	61.78	7.590
12.	8	4.07	3.93	15.45	$\begin{array}{r} 3.796 \\ 33.756 \\ \hline \end{array}$

Degree of Freedom

$$
\begin{aligned}
& V=(r-1)(c-1) \quad \text { where }: V=\text { degree of freedom, } \\
& V=(2-1)(6-1) \quad r=\text { rows, and } \\
& V=5 \\
& c=\text { colums. }
\end{aligned}
$$

for $V=5, X_{0.05}^{2}=11.070$
Here, 1. Calculated value of X^{2}, i.e. $\sum \frac{(O-E)^{2}}{E}=33.756$, and
2. Table value of chi-square $\left(X^{2}\right)$ for 5 degrees of freedom at 5% level of significance is 11.070 .

Conclusion :
The calculated value of chi-square $\left(X^{2}\right)-(33.756)$ is greater than the table value of chi-square (X^{2}) for 5 degrees of freedom at 5% level of significance (11.070). Hence, the hypothesis is rejected and thus there is significant difference btween ONIDA and ORSON regarding attractive appearance.

